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It has been suggested that two types of second sound, “drifting” and “driftless,” are possible
in dielectric crystals. The conditions for the existence of these two types of second sound are
obtained, both from a heuristic analysis of the problem and from an exact solution of the com~
plete linearized Boltzmann equation. The exact solution is given in terms of the eigenvalues
and eigenvectors of the collision matrix, with the effects of normal processes, umklapp pro-
cesses, and imperfections included. It is shown that to get drifting second-sound normal-
process scattering must dominate so that crystal momentum is approximately conserved;
while to get driftless second sound, the scattering must be such that a uniform energy flux
will decay exponentially. These conditions for the two types of second sound are not mutually
exclusive. It is found that normal-process scattering need not dominate for second sound to
exist; but that only when it does dominate, is second sound likely to be observable. The re-
laxation times for both types of second sound are shown to be the same and equal to the re-
ciprocal of smallest nonzero eigenvalue of the collision matrix. An expression is given for a
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lower limit on this relaxation time.
I. INTRODUCTION

In order to prevent confusion about the meaning
of “second sound” the present discussion is based
on the following usage: Second sound will be con-
sidered to exist when an accurate description of
variations of the local temperature T(X, t) requires
the use of a damped wave equation of the form
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Here, T, and v, are the relaxation time and the
propagation velocity of the second sound.

If “temperature” is replaced by “pressure” or
“density” in the above definition, one has the def-
inition of ordinary, or “first sound.” Besides the
difference in dependent variables, first and second
sounds in solids are distinguished by the fact that,
except for very special experiments,1 the damping
term 75 87/8¢ completely dominates the inertial
term 82T/9t2 for second sound, while the opposite
is true for first sound. Note that the neglect of
the first term in (1. 1) yields the usual diffusion
equation for temperature, while the neglect of the
second term yields a wave equation. The solution
of (1.1) and its limiting relationship to the solu-
tions of a diffusion equation and of an ordinary
wave equation are discussed by Morse and Fesh-
bach.? An obvious requirement for second sound
to be observable is that the frequency w, which
characterizes the rate of change of the local tem-
perature, be sufficiently high that

(1.2)

When wTg<< 1, the solution of (1.1) is indistin-
guishable from the solution of a diffusion equation.
It is well known that some correction to the dif-
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fusion equation is required when the rate of change
of the temperature becomes very rapid®® How-
ever, it is neither obvious nor, in general, true
that the correction term will take the form of a
second derivative with respect to time, as in
(1.1). The question of what conditions must pre-
vail for the correction term to have that form,
when the medium is a dielectric crystal, is the
subject of the present discussion.

A comprehensive review of the theory of second
sound in dielectric crystals has been given by
Enz, * who identifies two types: “drifting” and
“driftless.” Discussions of second sound based
on a Boltzmann equation usually couple a continu-
ity equation for energy balance with a continuity
equation for crystal-momentum balance®™"; the
effect obtained has been called drifting second
sound (for the reason mentioned in Sec. III).
Discussions of second sound based on many-body
theory have led to a different propagation velocity
than that obtained by the coupling of the balance
equations.®® The effect associated with this dif-
ferent propagation velocity has been called drift-
less second sound (for lack of a more descriptive
name). When the propagation velocity vy, refers
specifically to drifting or to driftless second
sound, it will be labeled viy,or vi;, respectively.
Enz* has estimated that for solid He* the numeri-
cal difference between vy; and of; is less than 6%.
The significance of the existence of these different
types of second sound is investigated here.

The present discussion falls into two parts.
First, a heuristic treatment of both drifting and
driftless second sounds is given to illustrate the
distinction between them with a minimum of math-
ematical complication. Then, a detailed analysis
of the same problem is carried out to show that
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the conclusions are rigorously correct and are
not just consequences of the simplifying assump-
tions made in the heuristic analysis.

To clarify the notation used, the elements of
the phonon description of transport in lattices
are reviewed in Sec. II. The heuristic treatment,
which is based on a relaxation-time approximation
to the Boltzmann equation, is given in Sec. IIL. It
is shown that: (a) To have drifting second sound,
normal-process scattering, which conserves av-
erage crystal momentum, must bring about a
drifting distribution in a time that is short com-
pared to the time for the umklapp process and im-
perfection scattering to destroy that distribution.
(This requirement is well known. *~8) (b) To have
driftless second sound, the scattering mechanism
must be such that the energy flux decays expo-
nentially. (This requirement is discussed in more
detail in Secs. VI and VII,)

In Sec. IV, the properties of the complete
linearized phonon Boltzmann equation are dis-
cussed in terms of the eigenvalues and eigen-
vectors of the complete collision matrix; that is,
the collision matrix which describes the effects
of normal processes, umklapp processes, and
imperfection_'%.“”11 These eigenvectors are used
to expand the phonon distribution in a series of
eigencomponents. In a spatially uniform system
each eigencomponent decays exponentially to zero
with a relaxation time that is the reciprocal of the
associated eigenvalue. The eigencomponent as-
sociated with local equilibrium has an infinite re-
laxation time.

In Sec. V, an exact solution of the complete
linearized Boltzmann equation is obtained for the
local temperature 7(X, #). The conditions under

which this solution reduces to a damped wave
equation are obtained, and are then analyzed in

Sec. VI. It is shown that, even though drifting
and driftless second sounds lead to different ex-
pressions for the propagation velocity vgs, the re-
laxation time 74 is the same in both cases and is
equal to the reciprocal of the smallest nonzero
eigenvalue of the complete collision matrix. The
results are discussed in Sec. VII.

The present discussion makes it clear that the
critical requirement for the existence of second
sound is that the scattering mechanisms bring
about a partially relaxed (or thermalized) inter-
mediate distribution which has a nonzero energy
flux in a time that is short compared to the time
for the energy flux to be destroyed. It is not
necessary that the intermediate distribution be a
drifting distribution; that is, it is not necessary
that average crystal momentum be approximately
conserved.'? Nevertheless, there is a need for the
approximate conservation average crystal momen-
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tum, but it is a matter of experimental feasibility,
rather than one of theoretical necessity: Since, in
practice, second sound is difficult to detect,! it is
only likely to be detected under the most favorable
conditions. For a given material, conditions are
most favorable in the temperature range where the
relaxation time 74 is largest. 7., is largest where
normal-process scattering dominates, and that,
of course, is the temperature range where aver-
age crystal momentum is most nearly a conserved
quantity. (That is also where the conditions for
drifting second sound are most likely to be satis-
fied, and where the thermal conductivity has its
maximum. )

A convenient formula for estimating the relaxa-
tion time is®®

Tss zl{/CO(vss)2 ’ (1- 3)

where K is the thermal conductivity and C, is the
specific heat per unit volume. It is shown in an
Appendix that, when the velocity of driftless sec -
ond sound vf; is used for vy in (1. 3) the quantity
on the right-hand side of (1. 3) becomes a lower
bound on 7.

Many of the equations obtained are strictly cor-
rect only for crystals with cubic symmetry. How-
ever, one expects similar relationships to hold
for crystals with lower symmetry, provided, of
course, that they are not too anisotropic. The ef-
fect of anisotropy has been discussed by Kwok.”

Most of the qualitative results obtained depend
only on the applicability of a Boltzmann equation,
and do not depend, for example, on whether the
excitations described by the Boltzmann equation
are bosons or fermions. In particular, many of

the results deduced apply to “second spin waves”
and to “second sound in metals.” That such effects

are possible has only been conjectured!*'%; they
have yet to be observed.

II. PRELIMINARIES

The microscopic state of a crystal lattice can be
described'® in terms of the phonon distribution
N,(X, t), where N,(X, ) d3xd %k (2m)~° gives the num-
ber of phonons in the volume element d3x at_.i with
wave vectors in the E-space element d°% at k.
Here, % stands for ('1;, s) where %k is the wave vec-
tor and s is the polarization index of the mode.
The factor of (27)73 reflects tﬁe fact that the den-
sity of allowed values of kink space is V(2m) 7,
Here V refers to the microscopically large, but
macroscopically small, volume elements into
which the system is divided as an aid in deriving
the Boltzmann equation'” (V can be identified with
the element d3x). One can write

Nk(;(! t):<Nk>0+ nk(iy t) ’ (2' 1)



2

where n,,(?;, t) is the deviation of the phonon distri-
bution from {N,),, its equilibrium value at temper-
ature T

(Nyyo = [exp(fiw,/kTo) =1]7" . (2.2)

The energy density u(X, #), the energy flux S, 0,
the crystal-momentum density J(%, #), and the
crystal-momentum flux A G{, t) are related to the
distribution (X, #) as follows:

u®, )=V 2, n&, 1) hiw, , (2.3a)
§&, 0=V 2, (X, ) fw, ¥, (2. 3b)
& 0=v'T, n& 0k, (2. 3¢)
tHE, )=V 2, n &, ) nk'ol . (2. 3d)

Here, ¥, is the group velocity 8w,/ 8-1;, and super-
scripts designate the components of vectors. The
factors of V! in (2. 3a)—(2. 3d) allows one to ap-

proximate the indicated sums over normal modes
by sums over the polarization index and integrals
over the first Brillouin zone:

VI 2~ M D [ dk . (2.4)
Any distribution #, can be written as
np=% (p+np)+3 (ny —ngy) , (2.5)

where k= (E, s) and =k= (—E, s); the first term on
the right-hand side of (2. 5) is the even part and the
second term is the odd part of n,. Since w,=w,,
and (N, )= (N_.), are even, and V,=-V_, is odd, and
since the first Brillouin zone is symmetric about
k=0, the energy density # and the crystal-momen-
tum flux ¢/ depend only on the even part of n,
while energy flux §and crystal-momentum density
J depend only on the odd part.

Note that both # and #*/ refer to deviations from
an equilibrium value at temperature T,. In par-
ticular, note that the complete energy density is

UR, )= Ug+ulx, D) , (2.6)
where Uy=V ™' 25, (N,)ohw, . (2.7

As is conventional in kinetic theory, the local
temperature will be determined by the require-
ment that the energy density U(X, #) and the local
temperature 7T(X, #) be related by the same func-
tional relationship that relates Uy to T in equilib-
rium. Only small deviations from equilibrium
will be considered, so that this requirement be-
comes

U(i, t)=U0+ Co[T(-;(, t)—T()] , (2. 8)
where C, is the specific heat per unit volume:
- dUO _ -1 d(N )
co-———dTo =V ———R—idTo Tiwy, . (2.9)

1t follows from (2. 6) and (2. 8) that
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u®, t)=Co[TR, t) = T). (2.10)

For future reference, note that the phonon distri-
bution %, associated with a small uniform change
inthe temperature is given by the local equilibrium
distribution
(@ 0= Lo 1 n-1), (21
0

d(Nk>O - ﬁwk
dT, ~ 4kT5 [sinh(7iw,/2kTy)]?

where (2.12)

III. HEURISTIC TREATMENT OF SECOND
SOUND

The damped wave equation for second sound is
an equation for the space and time dependence of
the local temperature. The local temperature
is related to the phonon distribution nk(ﬁ, t) through
Egs. (2.3a) and (2.10). The time and space de-
pendence of n,(X, #) is determined by the Boltz-
mann equation.

Any distribution can be expressed as a sum of
eigencomponents, as is explained in detail in Sec.
IV. The collisions of phonons with each other
and with imperfections cause every eigencompo-
nent (except n,?) to decay to zero with its own char-
acteristic relaxation time. However, to simplify
the discussion here, the following approximate
Boltzmann equation, in which the decay to local
equilibrium is characterized by a single relaxation
time 7, will be used:

on, X, ) T I B = - X, ) = nd (TR, 1))
ot ’ )
(3.1)

nd (T, ) is the local equilibrium distribution de-
fined by (2. 11); the value of T'(X, #) is determined
by the requirement that energy be conserved.

This approximate Boltzmann equation can be ex-
pected to be useful if all the eigencomponents im-
portant to the problem being considered, except
n?, have approximately the same relaxation time.
In practice, temperature measurements are av-
erages over some finite, but small, intervals of
time At [At is essentially the reciprocal of the fre-
quency w introduced in (1.2)]. As a result, quan-
tities which decay to zero with a relaxation time
much shorter than A¢ will not contribute appre-
ciably to these averages, so that the only eigen-
components important for second sound are those
with relaxation times of the order of, or greater
than, Af.

The energy balance equation is important for
the discussion of both types of second sound. It
is obtained by multiplying either (3. 1) or the com-
plete Boltzmann equation (4.1) by 7Zw,, summing
over all modes, and using (2.3). The result is
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S%u&, +v.8& H=o. 3.2)

Drifting Approximation

For the drifting approximation to be valid, nor-
mal-process scattering must relax a general dis-
tribution to a drifting distribution in a time much
shorter than the time for umklapp process and im-
perfection scattering to relax this intermediate
distribution to local equilibrium. The drifting
distribution is

NP R, 0)=(Np)o+mp X, 1)

= (exp{ [/, - 7k V&, 0) |/« TR, )} - 1)
= (Nk>0+ nl(z](T(;(’ t))

d(N KNy)o To
dTo Wy k V(. t)

where the approximation indicated by = is valid
when the deviation from the equilibrium distribu-
tion (N,), is small. NP is the most probable dis-
tribution consistent with the constraint that
UG, #) and J (%, £) not vary.!® The values of these
two quantities determine the value of 7(X, ) and
V(X, ). The similarity of the distribution N? to
the most probable distribution for real boson
particles (i.e., bosons for which 7k is the me-
chanical momentum) with an average drift veloc-
1t/ V(f{ ) has suggested the use of the word
“drifting” for characterizing the distribution N2
and the results based on it.

In this approximation, the densities and fluxes
are determined by the local values of the tempera-
ture 7T(%, #) and drift velocity V(X, #), as is easily
verified by combining (3. 3) with Eqgs. (2.3). One
finds that (2. 3a) reduces to (2.10), and that

Sé(i,t):ZiT( v, Akl d(N> ,{ﬁk‘)vf&,t),

(8. 4a)

ThE =20, To< ‘12 d<N> » h’k’) Vi, 1),
* (3. 4b)

(3.3)

tH&, 0 =<V'1}:,,e i%\’:ﬁ?— hk’vg) [T&, ) - T,).
(3. 4c)

In a lattice with cubic symmetry the tensor quan-
tities in square brackets in the above are propor-
tional to the unit matrix 6%/,

The crystal-momentum balance equation is ob-
tained by multiplying the Boltzmann equation (3. 1)

by %k and summing over all modes. One obtains
8Ji (%, 9) otHi(k, ¢
WM& 5, &) Tey. @

J.
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The term on the right-hand side reflects the fact
that average crystal momentum, unlike energy or
mechanical momentum, is only approximately con-
served, because of umklapp process and imper-
fection scattering.'®

A damped wave equation for 7', {) for a lattice
with cubic symmetry can be obtained by using
(2. 10) and (3. 4) to combine the energy balance
equation (3. 2) with the gradient of (3.5). The re-
sulting equation has the form of (1. 1) with 7, and
(vgs)? being, respectively, equal to 7 and to

()= <V_1 2 d(N >0 nk '-‘7k>2

X<3Cg

vy; is the velocity of drifting second sound for
crystals with cubic symmetry. The appropriate
value for 7 is the relaxation time characterizing
the decay of a drifting distribution to a local equi-
librium distribution.

Uiy oz<1vk>0 7k k)

dT, w, (3.6)

Energy Flux and Crystal-Momentum Density

In practice one expects the energy flux Sto be
roughly proportional to the crystal-momentum
density 3, at least at low temperatures where the
dispersion of the phonon frequency spectrum is
unimportant. Such a proportionality holds in the
drifting approximation. In general, however,
is not proportional to J. This follows from the
fact that Eq. (2. 3b) for S cannot be reduced to Eq.
(2, 3c) for J by the simple factoring out of some
constants. In fact, it is possible for § to be zero
while J is not zero. This is even theoretically
possible in the drifting approximation: It would
require that the term within the large parentheses
in (8. 4a) be zero, while that in (8. 4b) be nonzero.
Now, if the energy flux were zero, the energy
balance equation (3. 2) would reduce with the aid of
(2. 10) to the equation 87T(X, #)/8¢=0, which is
certainly not a damped wave equation! Yet, av-
erage crystal momentum could, at least in prin-
ciple, still be approximately conserved. This
possibility, although very unlikely in practice,
does illustrate the fact that the energy flux, not
the average crystal momentum, is the critical
quantity for second sound. This, of course, is
obvious from the fact that a change in the local
temperature requires a change in the energy den-
sity, which in turn requires a flux of energy.

The following derivation illustrates how a
damped wave equation for T'(X, #) can be obtained
when all that is known about the intermediate dis-
tribution is that a nonzero energy flux is associ-
ated with it.
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Driftless Approximation

For the driftless approximation to be valid,
collisions must cause an arbitrary distribution to
relax to a distribution of the following form in a
time that is short compared to the time for this
intermediate distribution to relax to local equilib-
rium:

(X, ) =g (TX, 1)+ m™ &, 1) . (3.7

Here, the even part of #n, is assumed to be a local
equilibrium distribution, while no assumption
about the form of the odd part is being made. For
such a distribution to result, all of the even eigen-
components other than ng must have significantly
shorter relaxation times than the eigencomponents
contained in #{%, (In Sec. IV it is shown that
eigencomponents are either even or odd.)

An expression for the time derivative of the en-
ergy flux can be obtained by multiplying (3. 1) by
Fiw, vl and summing over all modes:

o . . o (%, £
_a?sz(;{, t)+2, % 12’2__’1&(%_)__ fw, v}

dx
__S'&Y (3.8)
T

By substituting (3. 7) into the second term on the
left of (3.8), multiplying by 7, and rearranging
terms, one can show that

9 - T
<‘ra—t+ 1) SI& t)= -2, K ——gi,i (3.9)

where K'=7v7'}, LLS/Y7Y Tw,viol .

ar, (3.10)

Here K !/ isas defined a single relaxation-time ap-
proximation to the thermal conductivity. Equation
(3. 9) has the form of Fourier’s law for heat con-
duction with a correction term 785/ 8¢, which is
only significant when the flux is rapidly varying.
[Eq. (3.9) is equivalent to Eq. (5) of Chester.’]

A damped wave equation for T'(X, #) for a lattice
with cubic symmetry, for which K*/=K5*/, can be
obtained by combining the gradient of (3.9) with
the energy balance equation (3.2). Using the rela-
tionship between u(X, ) and T(X, ) given by (2. 10),
one can show that the resulting equation has the
form of (1. 1) with 7, and (vg,)? being respectively
equal to 7 and to

(0h? = (o) T -B0Me 10,4%,3,. (310

v{; is the velocity of driftless second sound for
crystals with cubic symmetry.

1t follows from (3. 9) that an energy flux not driven
by a temperature gradient will decay exponentially.
That is, if VT=0, then S(9)=5(0)e /", This means
that all of the eigencomponents which can give
rise, when excited, to an appreciable energy flux
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must have approximately the same relaxation time.
(The approximate value of these relaxation times
is the appropriate value for 7.) This suggests
that the validity of the driftless approximation re-
quires that the eigencomponents which give rise,
when excited, to a significant flux of energy must
have roughly the same relaxation times. That this
is indeed the case is verified in Sec. VI.

Approximate Expressions for Velocities
of Second Sound

For acoustic modes near the zone center, it is
true to the approximation that the frequency spec-
trum is isotropic that

wgsdvslil and Vg,,zvsﬁ/l.ﬁl , (3.12)

where v, is the velocity for longitudinal (ordinary)
sound waves and v, = v is the velocity for trans-
verse sound waves. At low temperatures, only
these modes are appreciably excited. Using the
information, one can show for low temperatures
that formula (3. 6) for drifting second sound re-
duces to?°

o =3(Z ) (£ o)

s=1

(3.13a)

while formula (3. 11) for driftless second sound
reduces to?!

s 1/ 3 . 3 -1
Wi ~3 (2 w)(Z0) -
3 s=1 ‘\s=1

Note that v;; and v§; would be the same if there
were but a single polarization branch, or if the
first-sound velocities were the same for all
branches. Because of this, the distinction be-
tween drifting and driftless second sound cannot
be understood with models possessing such prop-
erties.

(3.13b)

IV. PROPERTIES OF COLLISION MATRIX

The phonon Boltzmann equation with the collision
term linearized in n,, the deviations from equilib-
rium, can be written

Mk—g%’—ﬂ--f T’k ° Vnk (E, t) = - V—1 Ez hkznz\&; t) ’
(4.1)

where 1= (1, s") andI, like K, refers to an allowed

wave vector in the first Brillouin zone. The col-
lision matrix §,; can be written %2
=T+ Ay, 4.2)

where f‘k, is due to anharmonic forces and A,; is
due to randomly distributed lattice imperfections.

The following simple transformation changes
§3,; into a symmetric matrix®:

~ ~ - inh & 2¢T
27, =85, =8, (sm (o, 26T ) ) . (4. 3)

sinh (7w,/2kT )
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Using (4. 3) one can write the Boltzmann equation
in the symmetrized form

Y g;; D% U D= =V DB & D, (4.4)

where the symmetrized distribution 7, is related
to n,= N, =(Ny)o by

%, 1) =n,(X, 9 sinh(fw,/ 2« Ty) . (4.5)
Eigensolutions of Collision Matrix

It is convenient to introduce the eigenvalues
9 and eigenvectors 6%’ determined by the equa-

tion
V-lzl Q'l:l Gga):__ﬂ(a) el(ea) , (4. 6)

where the superscripts (@=0,1,2,3,4,..., etc.)

in parentheses label the different solutions.
Since {37, is a real and symmetric matrix®* the

eigenvectors can be chosen to be real and ortho-

normal

6, 6M)=5" , 4.7)
The scalar product is defined by
(f,g)EV—l Z;kfkgkz(g;f) . (4.8)
It follows from the Hermitian character of the
Hamiltonian of the lattice that®
8,=90, 1, (4.9)

where —1= (—Ts’). Using (4.9) and (4. 6), one can
show that

V_lzx ﬁ;,gf“g v 25 Sl g 95%)

= 9(0[) 9_(_%) . (4. 10)

That is, if 65 is an eigenvector, 6‘%) is also an
eigenvector with the same eigenvalue. It follows
that 65 + 6% and 65’ - 0'% are either eigen-
vectors with the same eigenvalue or are null vec-
tors. Because of this, all eigenvectors can be
chosen so that

0{) =+ 0% (4.11a)

When the plus (minus) sign is appropriate, the
eigenvector will be referred to as even (odd) and
will be designated by a roman superscript with
(without) bar:

02=6‘2 and 6{= -0, (4.11p)

Greek superscripts will be used when referring to
both types of eigenvectors.

There are no negative eigenvalues?; that is, for
all @, one has

Q@ >0, (4.12)
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Only one eigenvalue is necessarily zero. It will
be labeled a@=0. The associated normalized

eigenvector is'"?

Fiw,
/g — Iy
05 = (4 T5Co) /2 sinh(7w,/2xTy) ’ (4.13)

where C, is defined by (2. 9).

Interpretation; Eigencomponents

Any distribution f, can be expressed in the 6
representation as

L& =20, F %, 1) 05,
FOR =09, f&, 1).

It follows from (4. 1) and from the orthogonality
and completeness of the eigenvectors that the co-
efficients f‘® are determined by the coupled set
of equations

LA RS T O BAL R

(4.14)

where (4. 15)

+ Qplax n=0, (4.16)
where the matrix elements of the group velocity
are

(@|F|N=V12, 057,08 =(r|¥| @) . (4.17)
Note that, since ¥V, = —V.,, matrix elements con-
necting an even eigenvector with another even
eigenvector or an odd eigenvector with another odd
eigenvector are zero; that is

@|¥|oy=(i|¥|j)=0. (4.18)

It follows from (4. 5) and (4. 14) that any distri-
bution 7, can be written as a sum of eigencompo-
nents:

nk(i, t)=2a nk(a)(;(’ 1) s

where

(4.19)

gle)

m & )=f & 1) (WW>> - (4.20)

Every eigencomponent n,ﬁ"" is either even or odd
depending on whether the associated eigenvalue is
even or odd. To the extent that gradients can be
ignored, each eigencomponent n,g"" decays expo-
nentially to zero with a relaxation time equal to
1/Q¢®, To show this, simply set vf‘®’ =0 in
(4.186) and solve for £‘®(#). Since we have @ =0,
the relaxation time of #{” is infinite.

By using (4. 5) and (4. 14) in (2. 3a), one can show
with the aid of (4. 13) that

u®, t)= Ak TECH)Y2F O X, 1) . (4.21)

Referring to Sec. II, one determines from (4. 21)
that



FOR, )= (Cy/4 T[T, 1) - Ty , (4.22)
and from (4. 13) and (4. 20), that
mO&, H=np(TX, 1)), (4.23)

where # is defined by (2.11). That is, the zeroth
eigencomponent is the local equilibrium distribu-
tion. Note that once one of the four quantities:
energy density, local temperature, zeroth eigen-
component, or f“” (x, #) is specified, the other
three quantities are also determined.

Normal Processes; Drifting Distribution

The part of the collision matrix which describes
the effects of anharmonic forces can be written
as a sum of two parts,

fhz=ﬁkx+ i’m: (4. 24)

where f\'fk, involves only normal processes while
5’“ involves only umklapp processes. The eigen-
values N‘*) and the orthonormal eigenvectors ¢$®
of the symmetrized normal-process collision
matrix satisfy the equation?’

-IExka ¢(a) N(a)¢(u) (4' 25)

Four solutions of this have eigenvalues which
are necessarily zero.?” They will be labeled
a=0,1,2, and 3. The eigenvector associated with
local equilibrium is the same as that for the com-
plete collision matrix, ¢”=6:". In addition,
there are three eigenvectors associated with a
phonon drift; they are

w__A nk!

4.26
e = 4kTy sinh(7w,/2xTy) ( )

(i=1,2,3),

where A is a normalization constant, 2= (-' s), and
the 2! are components of the wave vector k

= (', K% %), These eigenvectors are related to the
drifting distribution (3. 3) as follows [see (4. 5),
(4.13) and (4. 26)]:

ne (X, 1) sinh(%w,/2 Ty)
=(Co/4kTY)Y? [TR, ) = To] 94"
+(To/A) 20 VI 1) o,

(4. 27)
1=1,2,3

If normal-process scattering dominates umklapp
process and imperfection scattering, the eigen-
values of the complete collision matrix associated
with the unperturbed eigenvectors (4. 26) are
given by the perturbation formula?®

QW (e {7+ K} 9= (oD, B0,  (4.28)

where the last equality follows from the fact that
21 NhLei=0 fori=1,2, or 3.
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Cubic Symmetry

In considering the dependence of the eigenvec-
tors on the operations of the cubic group, it is
convenient to write the eigenvectors (4. 26) of
N} as

o'l = 0 = o (' B RY)
where k= (&', k2 £%).

(4.29)

The symmetry of the frequency spectrum wg, is
such that these eigenvectors have the following
transformation properties:

¢ (kY B 1Y) = = V(= R, B, 1Y)
= qb;l)(kl’ __kz’ k3)= ¢;1)(k1, kZ, _kS),

oSO K R = 01 (R B B,

¢;3)(k1’ kZ’ k3)= ¢;1)(k3, kl, kZ) .
Thus, the ¢f) with ¢=1,2, and 3, transform ac-
cording to one of the three-dimensional repre-
sentations of the cubic group. Since the normal
process, the umklapp process, and (presumably)
the imperfection parts of the collision matrix are
all invariant under the above simple rotations and
reflections, the eigenvectors 6;" of the matrix
N+ (T, + AL,) with € =0, wh1ch are obtained from
05", 52, and ¢ by varying € from 0 to 1, have
the same transformation properties as the ¢‘“
Also, the eigenvalues Q'*) obtained from the de-
generate eigenvalues N =N® =N® -0 py the

same variation are degenerateandare, in general,
different from zero.”® That is,

(4. 30)

QPV=0®-0%>0 (cubic symmetry) . (4. 31)

It is important to realize that this conclusion does
not depend on the perturbation U/, + Ak, being
small,?®

The group velocity vf,= 9wz, /0k' for a crystal
with cubic symmetry has transformation prop-
erties similar to (4.30). Using these transforma-
tion properties and those of the eigenvectors with
i=1,2, or 3, one can show that

©fv'|jyecst  (3,5=1,2,3),
and (60, v'¢P) st (5,5=1,2,3).

Second-Sound Velocities

(4. 32)
(4. 33)

By substituting (2. 12) into Eq. (3. 6) for the ve-
locity of drifting second sound and using the for-
mulas for 65” and the ¢’ given above, one can
show that for crystals with cubic symmetry

(v)?=% [ 233 (60, i p)]2

i=1

o

=35 2o [(69, ¢!

i=1

o, (4.34)
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where (4. 33) has been used. Similarly, Eq. (3.11)
for the velocity of driftless second-sound can be
written for crystals with cubic symmetry as

(Wh)? = VIS, 09%,- 5,60 =1 (0|%-|0), (4.35)

where the second equality defines the symbol
(01¥-%10) .
V. RIGOROUS TREATMENT OF SECOND SOUND

In this section, the conditions for local temper-
ature variations to be describable by a damped
wave equation are obtained from an exact solution
of the complete linearized Boltzmann equation.
Use will be made of the fact that, if f‘?(X, ) satis-

fies a damped wave equation, then sodoes 7%, #), be-

cause of the proportionality of F‘*, #) to T(X, ¢)

— Ty The results obtained depend on the assump-
tion that the only eigenvalue of the complete col-
lision matrix that is zero is ‘?, the one associ-
ated with local equilibrium. It is assumed that

no eigenvalues other than Q'® are smaller than
the triply degenerate eigenvalue @ [see (4.31)].

Only crystals with cubic symmetry are considered.

The Fourier space and time transform of the
components of the symmetrized phonon density
f:%, 1) are defined by

FOQ =0 FQ w)), (5.1)
where

L& D=0@m™ [diq[ dwet@ X 9DF, (@G, w).

(5.2)

Only integration along the real axes of the com-
plex planes of w and q= (g, ¢% ¢°) will be consider-
ed. The Fourier space and time transforms of the
components of the complete Boltzmann equation

in symmetrized form [see (4.1), (4.5), and (4.16)]
are

—iwf = —i;(O['&»V]j)f‘”, (5. 32)
QY —iw)F 9= —i<j]?l . "7|0>7(0)
i D Glas@re, 6.
and h
QP —iw)F P =-i 2 (@|q-F[)HF P @+0),
I (5. 3c)

where the dependence of the 7 ‘*’ on § and w is left
implicit and where the notation of (4. 11) for even
and odd eigensolutions has been used.

To obtain an exact solution for 7 ¥, substitute
(5. 3c) into (5. 3b); this leads to

(Q(“ _iw)f(j)___ - i(jla .'6,’0)?(0)

=22 (j|M|myF ™ (5.4)

[

where by definition

ilq-via){alq.vl
» (Jqu)quvrn)_

a0 Q% ~jw (5. 5)

(j|M|my=

If n is the number of distinct odd eigenvectors,
(§IM |m) is an nxn matrix. The solution of (5. 4)
for the odd components f " ig

T =i 2 (m|(Q —iw+ M) )
x(jlg-v[oyF @, (5. 6)
where the reciprocal matrix (m|(Q - iw—-M) _1|j)
is defined so that
22 {m (@ =iw =)™ )
X [(Q =iw)d,,+(j|M|n)]= 8, . (5.7

The substitution of (5. 6) into (5. 3a) yields the
following exact equation for 7 ‘®:

iwf“”::&(ola-\’zlj)(j[(n-iw+M)‘1fm>

X (m|§ | 0)F, (5.8)
It is readily verified that
(l@=iw+ )™ |m)= DG G| R|my,  (5.9)

when the elements of the diagonal matrix D(j) are
defined by

()= —iw+(j|M]|j),
and the reciprocal matrix (j fR ’ m) is defined by
Zin 3| R[m) (B + (| M |0}y D) ]2 5, . (5-11)

The subscript #d in (5. 11) indicates that only the
nondiagonal elements of (m|M |n) are included;
the diagonal elements are included in D(j). The
reciprocal (jlR|m) can be expressed as

(3| R|m) =8 =G| M| m)ng Dim) ™

+ 200 | M| g D)™ | M| 1) g D)™ 4 o v
(5.12)

(5. 10)

A sufficient condition for the convergence of this

expansion is that®

L] (G M 1) 00 DOm) ™| <1

for all j. Now, for real values of w and { the real
part of D(m) is

(5.13)

@
ReD(m)=Q'™ G722 =
(m)=ats 2 Lm|3-9[D)]° Gy »
(5.14)
so that Re D(m) is always greater than ‘™. Since

ID(m)| >ReD(m), the modulus |D(m)| is always
greater than . Using this and (5. 6), one can
reduce condition (5.13) to the requirement that,
for all j,



| oo

{j1q-¥1a) @ q-vIm)l
r 3 MEIREEIm| .,
m(#j) 3#0

(5.15)

To the approximation that (5. 15) is satisfied, one
has

(j|R|m)y=5,,. (5.16)
With this, Eq. (5.8) becomes
iwf =23, K0]q-¥|H1ED(i) T (5.17)

Drifting Approximation

For the drifting approximation to result, two ap-
proximations in addition to (5. 16) are needed.
First, one needs

> 3
2 0TI+ # o7

MER® —iw]™.
(5.18)
With 9= Q® =0 this approximation is good

provided (a) that D(j)~ Q" —jw, which requires
that

P - 2
QD> Kjlg-vla) | (5.19)
T#0 Q®
for all odd eigensolutions j, and (b) that
3
2 [Ko[q-¥|p|?
=1
- . Q(l)_' |
> 2 |[o[q.v|5)|? Imj T (5. 20)
§#1,2,3 -iw

Second, it is required that

3
2 ofa-7l = 3175 2 Kol |i)F

i=

-

Me

n

[(0(0), ,UJ¢(J))] 2
(5.21)

The equality in (5. 21) follows from (4. 32), which
is true for crystals with cubic symmetry. The
approximation in (5.21) is valid if 6§~ ¢ for
i=1,2, and 3. This, of course, requires that
U}, +&{, constitute but a small perturbation to the
normal-process collision matrix N7, .

The last term on the right-hand side of (5. 21)
is the velocity of drifting second sound as given
by (4. 34). Consequently, with the above approxi-
mations Eq. (5.17) becomes

- wzf <0) —iwﬂ“’f (0) + |q|2 (1)!1)27(0)= 0. (5. 22)

Equation (5. 22) is the Fourier transform of a
damped wave equation for 79 (¥, #) with a second-
sound velocity of v;; and a relaxation time of 1/QV,
It then follows immediately from (5. 22) and (4. 22)
that T(X, 7) satisfies a damped wave equation with

. |
l4l* 3

n
-

i
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Vg = vy and T = 1/Q),

Driftless Approximation

For the driftless approximation to result, the
following approximation is needed in addition to
(5. 186):

225 KOfg =¥ 5)1 D(4) ™
=23, Kold-%|i)2[e® —iw]™ . (5. 23)

In crystals with cubic symmetry this requires (a)
that (5. 19) be satisfied, and (b) that

2 1€0|q-%[j) |2

Q¢ -

> 2 |<0|a°-‘7|j>|2—|5(1)——— (5. 24)
1#1,2,3

T2, —-iwl °

With the aid of properties (4. 18) and (4. 32), one
can verify for crystals with cubic symmetry that

25 Kog-%[5)P=(0]@G-?|0)
=|q|25(0]¥-¥|0) . (5. 25)

The term on the right-hand side of (5. 25) is the
velocity of driftless second sound as given by
(4.35). Consequently, Eq. (5.17) with approxima-
tion (5. 23) takes on the form of the Fourier trans-
form of a damped wave equation for f‘?(%, #) [see
(5. 22)] with a second-sound velocity of »{; and with
the same relaxation time as drifting second sound,
i.e., 1/Q", 1t follows immediately that T(, ¢)
satisfies a damped wave equation with vy, = vf

and T4=1/Q%M,

VI. IMPLICATIONS OF RIGOROUS TREATMENT

Two of the conditions for local temperature
variations to be describable by a damped wave
equation are expressed by (5.15) and (5. 19). These
conditions are common to both the drifting and
the driftless approximations. An inspection of
them suggests that (5.19) is probably more re-
strictive than (5.15), and that (5. 19) is probably
most restrictive when j has the value 1, 2, or 3.
This in turn suggests that the essence of these
conditions is contained in a requirement of the
form

G2 V]a) [P «o®e@ 6.1)
which must be satisfied for all even eigensolutions
except #=0. It is always possible to satisfy (6.1)
by limiting the size of |{|. However, the re-
quirement (1.2) that wr,, ~ 1 (or equivalently w
~ 0) imposes an effective lower limit on 1§ .
During a time interval of the order of 1/ w, a
temperature disturbance will have traveled a dis-
tance vy, /w [see Sec. VII], which suggests that
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reciprocal wavelengths at least as large as 14|

= w/vgs ® QM /v, are needed for second sound to
be observed. With this bound on |§}, condition
(6. 1) becomes

([(1]7|@) | /v 2 < (@@ /2D) ©.2)

This condition will be better satisfied the small-
er the degenerate eigenvalue 2’ is relative to
the nonzero “even” eigenvalues Q%’. When the
requirements for second sound implied in the
heuristic treatment are satisfied, 2’ will in-
deed be smaller than the Q. To see this, note
that it was assumed in the heuristic treatment
that an arbitrary distribution relaxes to an inter-
mediate distribution before relaxing to complete
equilibrium. The intermediate distributions con-
sidered are the drifting distribution (3. 3) and,
for the driftless approximation, the distribution
(3.7). The even part of both of these is the local
equilibrium distribution. For such intermediate
distributions to result, the relaxation times
1/ Q% of the even eigencomponents other than the
local equilibrium eigencomponent must be appre-
ciably less than the relaxation times of the odd
eigencomponents which remain. From this and
from the assumption that Q! is the smallest
eigenvalue for any of the odd eigencomponents (so
that 1/Q" is the longest relaxation time), it fol-
lows that 1/9% «1/Q% for a= 0, so that @’ will
indeed be small relative to the Q(" )

Condition (6. 2) is also better satisfied the larg-
er the elements (0]¥ |Z) are relative to the veloc-
ity vgs. However, little can be inferred about the
magnitudes of the (01V|a) without actually solving
for the eigenvectors 62’, other than, perhaps,
that they are not likely to be appreciably larger,
or even as large as vg.

@+0) .

Drifting Second Sound

At this point it is convenient to introduce a third
velocity for second sound. This velocity, which
will be labeled 7;;, is obtained by not making the
approximation 64" Z¢ ¥, which was made in
(5.21):

(7711 )2 =3

[<o|v?|5)]?

(6.3)

1
3

3
P
3 -

P2RCIORC ALY

This would be the best value for the velocity of
second sound if, for some material and some
range of temperatures, normal processes did not
dominate, but condition (5. 20) for drifting second
sound was nevertheless better satisfied than con-
dition (5. 24) for driftless second sound. Such a
situation is certainly possible. Unfortunately,

J. HARDY 2

there is no simple formula for estimating 7;; an-
alogous to formulas (3.13) for »;; and v{;, since
the only vectors whose functional forms are known
are 60, o 2, and ¢ [see (4.13) and
(4.26)]. It follows from Eqs. (4.35) and (6. 3)

that

20 0]y (j|¥]o)y>0.
i#1,2,3
(6.4)

Wi 2= @y )2 =5

Using (6.4) one can reduce the condition for
drifting second sound expressed by (5.20) to the
requirement that

(511)2 > 1(0{1)2— (EII)Z] (Qm/ﬂm) ’ (6.5)
which must be satisfied for all eigenvalues with
odd eigencomponents except Q’; the frequency
dependence of (5.20) has been ignored. 3 In addi-
tion to (6.5), the validity of the drifting approxima-
tion requires that condition (6.2) be satisfied and
that normal processes dominate, so that 65" = ¢{?
and U= vy,

Condition (6.5) will be better satisfied the smal-
ler the eigenvalue Q% is relative to the other
“odd” eigenvalues QY. When the requirements
for drifting second sound implied in the heuristic
treatment are satisfied, "’ will indeed be smal-
ler than these 2. To see this, note that for an
arbitrary distribution to first relax to a drifting
distribution (as was assumed in the heuristic
treatment) the relaxation time of the odd eigen-
components in the drifting distribution must be
large compared to the relaxation times 1/Q‘ of
the other odd eigencomponents. The odd part of
a drifting distribution is formed with the vectors
o, ¢2 and ¢ [see (4.27)], so that (assuming
652 ¢V for i=1,2 and 3) the odd part of the drift-
ing distribution has the relaxation time 1/%’,
Thus, one has 1/Q%>1/Q? or @V« o,

Driftless Second Sound

The validity of the driftless approximation re-
quires that the condition expressed by (5.24) be
satisfied, as well as condition (6.2). When the
dependence on frequency is ignored, * (5. 24)
reduces to

@
Wit T (offl (7|0 L5t 69
J ’

This is equivalent to the requirement for drift-
less second sound obtained in the heuristic treat-
ment; i.e., the requirement that the eigencompo-
nents which give rise, when excited, to a signifi-
cant flux of energy must all have roughly the same
relaxation times. To see this, note that the ener-
gy flux is given by [see (2.3b), (4.5), (4.13), (4.14),
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(4.17), and (4.18)]
3%, 1) =(4ToCo 22 ,f P (X, (0¥ |5), (6.7

where the sum is over only the odd eigenvectors.
For a spatially uniform distribution the coeffi-
cients 1’ decay exponentially |see (4.16)] so that
(6.7) becomes

B(t) < 22,7 (0)C0 [V | ) exp(~0¢ 1) | (6.8)

If condition (6.6) is satisfied, it follows for all j
except j=1, 2, or 3 that either

[<0¥]j) | <vi; or @@=q®
If this is true, then (6.8) reduces to
3(¢) = 5(0) exp(- Q™ ).

Conversely, if 5(f) decays exponentially, indepen-
dent of the values of the coefficients f*’(0) then,
for all j #1, 2, or 3, one must have either

[(0[7]j) | <vf or @P=Q® .

Implicit in this is the reasonable assumption that
the matrix elements {01V /) withj=1, 2, and 3
are never actually negligible; that is, even though
Ty is always less than vy; |see (6.3) and (6.4)] it
is never negligible compared to vy;.

VII. DISCUSSION

The conditions obtained for the existence of
second sound in Sec. VI are formulated in terms
of the eigenvalues Q‘“’ and eigenvectors 6;*’ of the
complete collision matrix. (Here, & specifies both
the wave vector k and the polarization index s of
the phonons.) The eigenvectors can be classified
as either even or odd according to their depen-
dence on k. Local equilibrium is associated with
eigenvector 62, which is even, and which has an
eigenvalue that is zero. The energy flux is as-
sociated with the odd eigenvectors. There are
three odd eigenvectors labeled 65, 6, and 6>,
which are of special significance. They are ob-
tained from the three drifting eigenvectors of the
normal-process collision matrix by a turning on
of the perturbations due to umklapp processes and
imperfections. The existence of such a connec-
tion between the eigenvectors of the complete col-
lision matrix and those of the normal-process col-
lision matrix does not depend on the difference be-
tween the two collision matrices being small. In
a crystal with cubic symmetry a degenerate eigen-
value, labeled 2'), is associated with these three
special eigenvectors. When second sound is pos-
sible, Q@ is the reciprocal of the relaxation
time T4 in (1.1).

Expression (6.2) is a condition which must be
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satisfied for either drifting or driftless second
sound to be possible. Roughly speaking, it speci-
fies that the special degenerate eigenvalue Q¢

be no larger than the smallest nonzero even eigen-
value. If this were not the case, the intermediate
distribution for processes such that wTg~1 would
not be sufficiently relaxed for T'(Xt), as defined in
Sec. II, to be reasonably interpreted as a temper-
ature.

Drifting Second Sound

The condition given by the expression (6.5) ap-
plies only to drifting second sound. In essence it
specifies that the special eigenvalue * be much
smaller than all other nonzero eigenvalues, even
or odd. One expects that that will indeed be the
case when normal processes dominate: The nor-
mal-process collision matrix can then be treated
as an unperturbed operator to which umklapp pro-
cess and imperfection scattering acts as a small
perturbation, so that @’ becomes the perturbed
value of an eigenvalue which is exactly zero in
the unperturbed problem (see Ref. 10 and Sec. IV).
Thus, it follows that the dominance of normal
processes, which occurred in Sec. VI as a third
condition for drifting second sound, is the really
essential condition. Expression (6.5) determines
when the dominance of the normal processes is
sufficient.

The requirement that Q* be small is equivalent
to the requirement for drifting second sound given
by other authors.!'* To see this, note that Q) is
essentially the reciprocal of 75, the relaxation
time for “resistive” processes. The reciprocal
of the so-called normal process relaxation time
Ty can be thought of as a parameter for character-
izing the size of the next larger eigenvalue, i.e.,
the smallest eigenvalue larger than ’, Thus,
the requirement that @’ be small is equivalent
to Ty<< 7. Of course, for drifting second sound
to be observable, it is also required that w721,

Other Types of Second Sound

Although the dominance of normal processes
can be sufficient for (6.2) and (6.5) to be satisfied,
there is no reason to believe that their dominance
is necessary for (6.2) and (6.5) to be satisfied.
Conceivably, the eigenvalue Q% could be suffic-
ciently less than all other nonzero eigenvalues
without normal processes dominating. If such
were the case, temperature variations would still
be accurately described by a damped wave equa-
tion, but the second-sound velocity would be the
quantity vy, defined by (6.3), not the drifting or
the driftless velocities vy or vyy. Thus, there is
the possibility of yet a third type of second sound.

The condition which distinguishes driftless sec-
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ond sound (the second type) from drifting second
sound (the first type) is given by expression (6. 6).
It specifies that all eigenvectors 65’ for which
(01¥14) +(§ 1V 10) makes a significant contribution
to (0¥ - V10) must have eigenvalues Q' of rough-
ly equal size. Since {01V |7} is certainly not
likely to be negligible for j=1, 2, or 3 and since
QY is the eigenvalue forj=1, 2, and 3, it follows
that for driftless second sound to be possible one
must have either (01V[7)~0 or Q9= Q? for all j.
Here, {01V |j) is the matrix element of the group
velocity connecting the local equilibrium eigenvec-
tor 6 with the odd eigenvector 6.,

It is difficult to say much of a qualitative nature
about the implications of the above condition. It
depends strongly on the actual form of the eigen-
vectors of the collision matrix and on the size of
the associated eigenvalues, and virtually nothing
is known about such quantities. A study of them
could be most useful. A possible direction for
such a study has been suggested by Wannier. !

If none of the sets of conditions for the existence
of second sound discussed here are satisfied for
a particular material and temperature range, it
does not follow that the applicability of the diffu~
sion equation for heat extends to arbitrarily rap-
idly varying processes. It means only that the
range of applicability of the diffusion equation can-
not necessarily be extended by simply adding on
a term which changes it to a damped wave equa-
tion. Nothing in the present discussion excludes
the possibility of there being even more types of
second sounds than the three suggested here.

Significance of Other Types of Second Sound

Until methods are developed for obtaining more
information about the eigenvalues and eigenvectors
of the complete collision matrix, the main signifi-
cance of driftless second sound and of the type of
second sound with the propagation velocity vy; is
that their existence indicates that normal proces-
ses need not dominate for second sound to be pos-
sible. They need to dominate only if the second
sound is to be of the drifting type. What is essen-
tial for the existence of second sound is the slow
decay of the energy flux; that is, a flux of energy
which is not driven by a temperature gradient
must decay sufficiently slowly that the decay can
be observed experimentally. With drifting second
sound, the decay of an undriven energy flux is
determined by the rate of decay of the drifting dis-
tribution, With driftless second sound, it is de-
termined by the rate of decay of all of the eigen-
components which contribute to the transport of
energy [i. e. , eigencomponents j for which
(0lvlj) #0. See Eq. (6.7)].

The fact that the conservation of average crys-

2

tal momentum is not a necessary requirement for
the existence of second sound in a phonon system
indicates that, when investigating the possibility
of second sound in other systems, one should con-
sider all mechanisms which can lead to a slow de-
cay of the energy flux. - The possibility suggested
for second sound in metals is an example of a
mechanism which has nothing to do with crystal-
momentum conservation but, nevertheless, can
lead to a slow decay of the energy flux and, thus,
to the possibility of second sound.

Since many-body theory has predicted a second-
sound velocity vy; different from the velocity vy,
predicted by previous derivations based on a
Boltzmann equation, a question has existed con-
cerning the relationship of the different theoreti-
cal velocities to the velocity of observed second
sound. The present work facilitates the answer-
ing of that question, as it predicts both vy and vy
from an analysis of the same linearized Boltzmann
equation. For the reason mentioned in Sec. I,
second sound is only likely to be observed (at
least at present) when normal processes dominate.
Thus, the drifting approximation (with the propa-
gation velocity vy;) should certainly apply to any
observed second sound. The interesting question
is: Is it possible that the driftless approximation
(with the propagation velocity v;;) also applies?

In general, the answer is no, for the following

reason.
For the driftless approximation to be valid, one

must have either (0/¥1j) ~0 or @~ Q" for all j..
When normal processes dominate, @’ is much
smaller than all other nonzero eigenvalues, so
that for drifting and driftless second sound to be
possible at the same time, one must have( 01V ;)
~0 except when j refers to one of the three special
odd eigenvectors. If this were the case, the
eigenvector expansion of the quantity 6, ¥, would
involve only the three special eigenvectors. Fur-
thermore, when normal processes dominate, the
three special eigenvectors reduce to the drifting
eigenvectors given by (4.26). Now, to the extent
that dispersion and anisotropy can be ignored, one
can prove the following®%: If 6,”%, could be expan-
ded in terms of the three drifting eigenvectors on-
ly, the velocity of first sound would be the same
for all polarizations, and conversely. However,
in real materials the velocity of first sound is, in
general, considerably lower for the transverse
polarizations than it is for longitudinal polariza-
tion. As a result, when normal processes domi-
nate, the driftless approximation is, in general,
not applicable.

The above argument, of course, does not ex~
clude the possibility of the conditions for both
drifting and driftless second sound being satisfied
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at the same time.3® The existence, at least in
theory, of such a possibility suggests that the dif-
ferent types of second sound should be thought of
not as distinct “modes” of heat propagation, but
rather as simply different approximation schemes
which lead to the same phenomena.

Some Limitations

It should be emphasized that, since the present
work is based on a linearized Boltzmann equation,
the applicability of the results obtained (or to be
more precise, of the present derivation of the re-
sults) is limited to systems to which the linearized
Boltzmann equation is applicable. Two important
limitations on its applicability should be men-
tioned. First, the deviation of the phonon distri-
bution from an equilibrium distribution must be
small, Otherwise, one is not justified in linear-
izing with respect to that deviation. Second, lat-
tice disturbances involving very long-wavelength
normal modes cannot be described, since the pho-
nons described by the Boltzmann equation are con-
sidered to be localized, and localization imposes
an uncertainty relation type of restriction on the
wavelengths (AR Ax >1, where A=2n/k). In par-
ticular, if heat pulses are being considered the
length characteristic of the localization of the pho-
nons must be less than the mean free path of the
heat pulses (Ax <mean free path).

Second-Sound Experiments

Most experiments with second sound have been
done with thermal pulses.® In such experiments
a short-duration heat pulse is introduced into a
sample at one location and the response is obser-
ved at another. Solutions of the damped wave
equation corresponding to such an experimental
setup are discussed by Morse and Feshbach. %
They indicate that an attenuated pulse propagates
away from the initial disturbance with a velocity
vgg)and is followed by a diffusive-type wave. The
existence of the initial pulse is the result of the
addition of the second time derivative term to the
diffusion equation, so that its existence can be
considered as evidence of second sound. The so-
lution also indicates that the second-sound pulse,
which has the shape of the initial pulse, decays
as exp(-t/27,). Consequently, second-sound
pulses have an effective mean free path of 2vg7gs.
This can be estimated with the approximate for-
mula 2K/Cq,, which follows immediately from
(1.8); v can be estimated from (3.13).

Ackermann and Guyer® have estimated the mean
free path for solid He* and solid He®. (2047, is
equivalent to their mean free path A\y.) They have
also estimated the mean free path for normal pro-
cesses, so that they have a complete check on the
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conditions for drifting second sound. Their dis-
cussion of the experimental results for solid He*
and solid He® strongly suggest that the second
sound has indeed been observed in these materi-
als. Experimenters have also looked for second
sound in other dielectrics. 33 In the case of the
experiments of von Gutfeld and Nethercot it ap-
pears that their failure to observe second sound
was the result of the very short mean free path of
second sound in their samples. 3 These authors
did, however, observe some rather interesting
pulses which traveled with the energy velocity for
first sound. But, because of the large energy in-
puts which apparently were used, it is likely that
the description of these first-sound pulses is out-
side the range of validity of the linearized Boltz-
mann equation.
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APPENDIX: LOWER BOUND ON 7

According to the kinetic theory of lattice heat
conduction, the energy flux is%

S=v-1T, nlw, ¥y , (A1)
where the phonon density #, is the solution of

d N - ~ -~

—<—BZ°—V,¢-VT=—V'IZ>,Q,217L, (A2)

aT,

If one defines a vector f, = (1, 72, 73) by the equa-
tion

sy Ji____ eT
iy == 20 sinh(7zw, /2kT)  ox* ° (a3)
then Egs. (A1) and (A2) can be rewritten with the
aid of (2.12), (4.3), (4.13), and the definition of
the thermal conductivity K ¥/ as

K'Y =(@kTEC) V1T, F i 6,9 v (a4)

and (Co/4kTA2 0 o} =v-13, QL fE . (A5)

Equations (A4) and (A5) can be solved by ex-
panding f, in the 6 representation by solving (A5)
for the eigencomponents of f x+ and then substitut-
ing into (A4). The result is

KY =Co20 n{0|0t |m)(m|v? |0) /@™ |, (A6)

where only the odd eigenvectors are summed over.
For crystals with cubic symmetry for which £’
=Q® =0 jis the smallest eigenvalue with odd
eigenvectors, one has

K=3 TrK*"¥ <Co% ‘E [Kolv? |m) /@™
m
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=Co5(0|¥ ¥ |0) /@ , (A7)

where Eq. (4.18) and the completeness of the 64’
have been used. Using Eq. (4.35) for the velocity
of driftless second sound, one obtains

K< Colwf)t/Q" (A8)

With 7o, =1/9‘ this can be rewritten as a lower
bound on the relaxation time:

HARDY 2

Tes >K/Colon . (a9)

If condition (6. 6) for driftless second sound is
satisfied, the right-hand side of (A9) will not only
be a lower bound on 7., it will also give a good
approximation to 7,. Such an approximation for
Tqs [see (1. 3)] can also be obtained from the re-
quirement that a damped wave equation for T'(X, ?)
reduce to the usual diffusion equation when slowly
varying processes are considered.

*Work done under the auspices of the U.S. Atomic
Energy Commission.
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Comments on Random Walk and Diffusion as Models for Exciton Migration*
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It has been shown that exciton diffusion cannot explain the time dependence of host-sensi-
tized energy transfer in doped organic crystals. It is claimed in a recent publication that
formulating exciton migration as a random-walk problem eliminates any discrepancies in the
observed and predicted time dependences of the energy transfer. In this paper we show that
the two models for exciton migration give exactly the same theoretical predictions, and the
anomalous time dependence remains unexplained.

This note is a comment on a recent paper by
Rosenstock! in which it is claimed that random-
walk and diffusion models for energy migration
give different theoretical predictions for the time

dependence of fluorescence intensities,

We recently demonstrated that studying the com-
plete time evolution of the fluorescence intensities
of sensitizers and activators is an important tech -



